Chapter 3
3.1 Exercise 3.1
3.2 Exercise 3.2
3.3 Exercise 3.3
3.4 Exercise 3.4
3.5 Exercise 3.5
3.6 Exercise 3.6
3.7 Exercise 3.7
3.8 Exercise 3.8
3.9 Exercise 3.9
3.10 Exercise 3.10
3.11 Exercise 3.11
3.12 Exercise 3.12
3.13 Exercise 3.13
3.14 Exercise 3.14
3.15 Exercise 3.15
3.16 Exercise 3.16
3.17 Exercise 3.17
3.18 Exercise 3.18
3.19 Exercise 3.19
3.20 Exercise 3.20
3.21 Exercise 3.21
3.22 Exercise 3.22
3.23 Exercise 3.23
3.24 Exercise 3.24
3.25 Exercise 3.25
3.26 Exercise 3.26
3.27 Exercise 3.27
3.28 Exercise 3.28
3.29 Exercise 3.29
3.30 Exercise 3.30
3.31 Exercise 3.31
3.32 Exercise 3.32
3.33 Exercise 3.33
3.34 Exercise 3.34
3.35 Exercise 3.35
3.36 Exercise 3.36
3.37 Exercise 3.37
3.38 Exercise 3.38
3.39 Exercise 3.39
3.40 Exercise 3.40
3.41 Exercise 3.41
3.42 Exercise 3.42
3.43 Exercise 3.43
3.44 Exercise 3.44
3.45 Exercise 3.45
3.46 Exercise 3.46
3.47 Exercise 3.47
3.48 Exercise 3.48
3.49 Exercise 3.49
3.50 Exercise 3.50
3.51 Exercise 3.51
3.52 Exercise 3.52
3.53 Exercise 3.53
3.54 Exercise 3.54
3.55 Exercise 3.55
3.56 Exercise 3.56
3.57 Exercise 3.57
3.58 Exercise 3.58
3.59 Exercise 3.59
3.60 Exercise 3.60
3.61 Exercise 3.61
3.62 Exercise 3.62
3.63 Exercise 3.63
3.64 Exercise 3.64
3.65 Exercise 3.65
3.66 Exercise 3.66
3.67 Exercise 3.67
3.68 Exercise 3.68
3.69 Exercise 3.69
3.70 Exercise 3.70
3.71 Exercise 3.71
3.72 Exercise 3.72
3.73 Exercise 3.73
3.74 Exercise 3.74
3.75 Exercise 3.75
3.76 Exercise 3.76
3.77 Exercise 3.77
3.78 Exercise 3.78
3.79 Exercise 3.79
3.80 Exercise 3.80
3.81 Exercise 3.81
3.82 Exercise 3.82

3.37 Exercise 3.37

This is what we are given as an example of a more expressive procedure for creating adder connectors:

(define (c+ x y)
  (let ((z (make-connector)))
    (adder x y z)
    z))

Note that it only takes the two input wires, creating the output wire itself and returning it as a result for more easy composition. We can do similarly for the other operators:

(define (c- x y)
  (let ((z (make-connector)))
    (adder y z x)
    z))
(define (c* x y)
  (let ((z (make-connector)))
    (multiplier x y z)
    z))
(define (c/ x y)
  (let ((z (make-connector)))
    (multiplier y z x)
    z))
(define (cv v)
  (let ((z (make-connector)))
    (constant v z)
    z))

We can then define a Celsius-Fahrenheit converter as they have. Note that, due to the semantics of how c/ is used below, y had to be used as an argument to multiplier before x.

(define (celsius-fahrenheit-converter x)
  (c+ (c* (c/ (cv 9) (cv 5))
          x)
      (cv 32)))
(define C (make-connector))
(define F (celsius-fahrenheit-converter C))

A REPL session shows that this works:

> (probe "F" F)

#<procedure>

> (probe "C" C)

#<procedure>

> (set-value! F 32 'user)

Probe: F = 32

Probe: C = 0

'done

> (forget-value! F 'user)

Probe: F = ?

Probe: C = ?

'done

> (set-value! C 100 'user)

Probe: C = 100

Probe: F = 212

'done

> (forget-value! C 'user)

Probe: C = ?

Probe: F = ?

'done

> (set-value! F 75 'user)

Probe: F = 75

Probe: C = 215/9

'done