Chapter 3
3.1 Exercise 3.1
3.2 Exercise 3.2
3.3 Exercise 3.3
3.4 Exercise 3.4
3.5 Exercise 3.5
3.6 Exercise 3.6
3.7 Exercise 3.7
3.8 Exercise 3.8
3.9 Exercise 3.9
3.10 Exercise 3.10
3.11 Exercise 3.11
3.12 Exercise 3.12
3.13 Exercise 3.13
3.14 Exercise 3.14
3.15 Exercise 3.15
3.16 Exercise 3.16
3.17 Exercise 3.17
3.18 Exercise 3.18
3.19 Exercise 3.19
3.20 Exercise 3.20
3.21 Exercise 3.21
3.22 Exercise 3.22
3.23 Exercise 3.23
3.24 Exercise 3.24
3.25 Exercise 3.25
3.26 Exercise 3.26
3.27 Exercise 3.27
3.28 Exercise 3.28
3.29 Exercise 3.29
3.30 Exercise 3.30
3.31 Exercise 3.31
3.32 Exercise 3.32
3.33 Exercise 3.33
3.34 Exercise 3.34
3.35 Exercise 3.35
3.36 Exercise 3.36
3.37 Exercise 3.37
3.38 Exercise 3.38
3.39 Exercise 3.39
3.40 Exercise 3.40
3.41 Exercise 3.41
3.42 Exercise 3.42
3.43 Exercise 3.43
3.44 Exercise 3.44
3.45 Exercise 3.45
3.46 Exercise 3.46
3.47 Exercise 3.47
3.48 Exercise 3.48
3.49 Exercise 3.49
3.50 Exercise 3.50
3.51 Exercise 3.51
3.52 Exercise 3.52
3.53 Exercise 3.53
3.54 Exercise 3.54
3.55 Exercise 3.55
3.56 Exercise 3.56
3.57 Exercise 3.57
3.58 Exercise 3.58
3.59 Exercise 3.59
3.60 Exercise 3.60
3.61 Exercise 3.61
3.62 Exercise 3.62
3.63 Exercise 3.63
3.64 Exercise 3.64
3.65 Exercise 3.65
3.66 Exercise 3.66
3.67 Exercise 3.67
3.68 Exercise 3.68
3.69 Exercise 3.69
3.70 Exercise 3.70
3.71 Exercise 3.71
3.72 Exercise 3.72
3.73 Exercise 3.73
3.74 Exercise 3.74
3.75 Exercise 3.75
3.76 Exercise 3.76
3.77 Exercise 3.77
3.78 Exercise 3.78
3.79 Exercise 3.79
3.80 Exercise 3.80
3.81 Exercise 3.81
3.82 Exercise 3.82

3.61 Exercise 3.61

To find the inverse X of the unit power series S, we can simply translate the equality X = S0 - SR*X (where S0 is the constant term of S and SR is the coefficients of S after the constant) into a procedure:

(define (invert-unit-series s)
  (cons-stream (stream-car s)
               (scale-stream (mul-series (stream-cdr s) (invert-unit-series s)) -1)))

If we take the inverse of a power series (say, the series representing ex) and multiply it by the original series, we should get a constant result of 1. We can verify that this is the case:

> (define exp-series
    (cons-stream 1 (integrate-series exp-series)))
> (display-stream (take-stream (mul-series exp-series (invert-unit-series exp-series)) 5))

1

0

0

0

0

'done