Chapter 2
2.1 Exercise 2.1
2.2 Exercise 2.2
2.3 Exercise 2.3
2.4 Exercise 2.4
2.5 Exercise 2.5
2.6 Exercise 2.6
2.7 Exercise 2.7
2.8 Exercise 2.8
2.9 Exercise 2.9
2.10 Exercise 2.10
2.11 Exercise 2.11
2.12 Exercise 2.12
2.13 Exercise 2.13
2.14 Exercise 2.14
2.15 Exercise 2.15
2.16 Exercise 2.16
2.17 Exercise 2.17
2.18 Exercise 2.18
2.19 Exercise 2.19
2.20 Exercise 2.20
2.21 Exercise 2.21
2.22 Exercise 2.22
2.23 Exercise 2.23
2.24 Exercise 2.24
2.25 Exercise 2.25
2.26 Exercise 2.26
2.27 Exercise 2.27
2.28 Exercise 2.28
2.29 Exercise 2.29
2.30 Exercise 2.30
2.31 Exercise 2.31
2.32 Exercise 2.32
2.33 Exercise 2.33
2.34 Exercise 2.34
2.35 Exercise 2.35
2.36 Exercise 2.36
2.37 Exercise 2.37
2.38 Exercise 2.38
2.39 Exercise 2.39
2.40 Exercise 2.40
2.41 Exercise 2.41
2.42 Exercise 2.42
2.43 Exercise 2.43
2.44 Exercise 2.44
2.45 Exercise 2.45
2.46 Exercise 2.46
2.47 Exercise 2.47
2.48 Exercise 2.48
2.49 Exercise 2.49
2.50 Exercise 2.50
2.51 Exercise 2.51
2.52 Exercise 2.52
2.53 Exercise 2.53
2.54 Exercise 2.54
2.55 Exercise 2.55
2.56 Exercise 2.56
2.57 Exercise 2.57
2.58 Exercise 2.58
2.59 Exercise 2.59
2.60 Exercise 2.60
2.61 Exercise 2.61
2.62 Exercise 2.62
2.63 Exercise 2.63
2.64 Exercise 2.64
2.65 Exercise 2.65
2.66 Exercise 2.66
2.67 Exercise 2.67
2.68 Exercise 2.68
2.69 Exercise 2.69
2.70 Exercise 2.70
2.71 Exercise 2.71
2.72 Exercise 2.72
2.73 Exercise 2.73
2.74 Exercise 2.74
2.75 Exercise 2.75
2.76 Exercise 2.76
2.77 Exercise 2.77
2.78 Exercise 2.78
2.79 Exercise 2.79
2.80 Exercise 2.80
2.81 Exercise 2.81
2.82 Exercise 2.82
2.83 Exercise 2.83
2.84 Exercise 2.84
2.85 Exercise 2.85
2.86 Exercise 2.86
2.87 Exercise 2.87
2.88 Exercise 2.88
2.89 Exercise 2.89
2.90 Exercise 2.90
2.91 Exercise 2.91
2.92 Exercise 2.92
2.93 Exercise 2.93
2.94 Exercise 2.94
2.95 Exercise 2.95
2.96 Exercise 2.96
2.97 Exercise 2.97

2.37 Exercise 2.37

matrix-*-matrix maps over each row of the matrix a procedure that maps multiplication by the scalar v over the entries in the row.

(define (matrix-*-vector m v)
  (map (lambda (r) (map (lambda (e) (* e v)) r)) m))

transpose uses cons with accumulate-n to create a list of lists made up of the columns of the original matrix.

(define (transpose mat)
  (accumulate-n cons nil mat))

matrix-*-matrix computes the dot-product of each row of m with each column of n (where the columns are found with transpose).

(define (matrix-*-matrix m n)
  (let ((cols (transpose n)))
    (map
     (lambda (row)
       (map (lambda (col) (dot-product row col))
            cols))
     m)))