Chapter 2
2.1 Exercise 2.1
2.2 Exercise 2.2
2.3 Exercise 2.3
2.4 Exercise 2.4
2.5 Exercise 2.5
2.6 Exercise 2.6
2.7 Exercise 2.7
2.8 Exercise 2.8
2.9 Exercise 2.9
2.10 Exercise 2.10
2.11 Exercise 2.11
2.12 Exercise 2.12
2.13 Exercise 2.13
2.14 Exercise 2.14
2.15 Exercise 2.15
2.16 Exercise 2.16
2.17 Exercise 2.17
2.18 Exercise 2.18
2.19 Exercise 2.19
2.20 Exercise 2.20
2.21 Exercise 2.21
2.22 Exercise 2.22
2.23 Exercise 2.23
2.24 Exercise 2.24
2.25 Exercise 2.25
2.26 Exercise 2.26
2.27 Exercise 2.27
2.28 Exercise 2.28
2.29 Exercise 2.29
2.30 Exercise 2.30
2.31 Exercise 2.31
2.32 Exercise 2.32
2.33 Exercise 2.33
2.34 Exercise 2.34
2.35 Exercise 2.35
2.36 Exercise 2.36
2.37 Exercise 2.37
2.38 Exercise 2.38
2.39 Exercise 2.39
2.40 Exercise 2.40
2.41 Exercise 2.41
2.42 Exercise 2.42
2.43 Exercise 2.43
2.44 Exercise 2.44
2.45 Exercise 2.45
2.46 Exercise 2.46
2.47 Exercise 2.47
2.48 Exercise 2.48
2.49 Exercise 2.49
2.50 Exercise 2.50
2.51 Exercise 2.51
2.52 Exercise 2.52
2.53 Exercise 2.53
2.54 Exercise 2.54
2.55 Exercise 2.55
2.56 Exercise 2.56
2.57 Exercise 2.57
2.58 Exercise 2.58
2.59 Exercise 2.59
2.60 Exercise 2.60
2.61 Exercise 2.61
2.62 Exercise 2.62
2.63 Exercise 2.63
2.64 Exercise 2.64
2.65 Exercise 2.65
2.66 Exercise 2.66
2.67 Exercise 2.67
2.68 Exercise 2.68
2.69 Exercise 2.69
2.70 Exercise 2.70
2.71 Exercise 2.71
2.72 Exercise 2.72
2.73 Exercise 2.73
2.74 Exercise 2.74
2.75 Exercise 2.75
2.76 Exercise 2.76
2.77 Exercise 2.77
2.78 Exercise 2.78
2.79 Exercise 2.79
2.80 Exercise 2.80
2.81 Exercise 2.81
2.82 Exercise 2.82
2.83 Exercise 2.83
2.84 Exercise 2.84
2.85 Exercise 2.85
2.86 Exercise 2.86
2.87 Exercise 2.87
2.88 Exercise 2.88
2.89 Exercise 2.89
2.90 Exercise 2.90
2.91 Exercise 2.91
2.92 Exercise 2.92
2.93 Exercise 2.93
2.94 Exercise 2.94
2.95 Exercise 2.95
2.96 Exercise 2.96
2.97 Exercise 2.97

2.9 Exercise 2.9

First, a definition of the width procedure:

(define (width x) (/ (- (upper-bound x) (lower-bound x)) 2))

We can use algebra to define the widths of the sum and difference of intervals in terms of the widths of the operands:

Let x and y be intervals (ax, bx) and (ay, by)

width(x) = (ax + bx) / 2

width(y) = (ay + by) / 2

 

width(x+y) = ((ax + ay) + (bx + by)) / 2

= ((ax + bx) + (ay + by)) / 2

= width(x) + width(y)

 

Similarly,

width(x - y) = ((ax - ay) + (bx - by)) / 2

= ((ax + bx) - (ay + by)) / 2

= width(x) - width(y)

To show that the width of a multiplied (or divided) pair of intervals is not a function of the widths of these intervals, we can construct two intervals with the same width and compare the widths of these intervals multiplied (or divided) by a third interval.

I could demonstrate this algebraically, but instead I will operate on the intervals using our procedures:

> (define i1 (make-interval 0 5))
> (define i2 (make-interval 5 10))
> (= (width i1) (width i2))

#t

> (define i3 (make-interval 1 10))
> (= (width (mul-interval i1 i3)) (width (mul-interval i2 i3)))

#f

> (= (width (div-interval i1 i3)) (width (div-interval i2 i3)))

#f